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Written by K. Li at NJU

§0.1 Practice: Week 01 - Categorical Concepts

Let C and D be categories.

1.1. Let F,G : C × C → D be (covariant)functors. Suppose that η = {ηX,Y :

F (X, Y )→ G(X, Y ) | X, Y ∈ C} is a transformation from F to G. Show that

the followings are equivalent:

(i) η is a natural transformation from F to G;

(ii) η = {ηX,Y } is natural in both variables X and Y . In other words, for any

fixed Y ∈ C, η−,Y is a natural transformation from F (−, Y ) to G(−, Y );

meanwhile for any fixed X ∈ C, ηX,− is a natural transformation from

F (X,−) to G(X,−).

Try to generalize this proposition more or less.

Answer. (i)⇒(ii) is direct.

(ii)⇒(i): For any morphism (f, g) : (X, Y )→ (X ′, Y ′) in C × C, the natural-

ities of η−,Y and ηX′,− imply that both small rectangles in the following diagram

commute:

(X, Y )

(f,idY )
��

F (X, Y )

F (f,idY )
��

ηX,Y // G(X, Y )

G(f,idY )
��

(X ′, Y )

(idX′ ,g)
��

F (X ′, Y )

F (idX′ ,g)
��

ηX′,Y // G(X ′, Y )

G(idX′ ,g)
��

(X ′, Y ′) F (X ′, Y ′)
ηX′,Y ′ // G(X ′, Y ′)

As a conclusion, the large rectangle

(X, Y )

(f,g)

��

F (X, Y )

F (f,g)

��

ηX,Y // G(X, Y )

G(f,g)

��
(X ′, Y ′) F (X ′, Y ′)

ηX′,Y ′ // G(X ′, Y ′)
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commutes as well, which shows that η is natural from F to G.

1.2. Suppose that C and D are equivalent. Try to complete and prove the following

claims:

(1) A diagram commutes in C, if and only if the corresponding diagram com-

mutes in D;

(2) A morphism in C has certain properties (such as monic, epic or isomor-

phism), if and only if the corresponding morphism in D does as well.

Answer. (1) Denote an equivalence (functor) by F : C → D. The left-side dia-

gram commutes in C if and only if the right side diagram commutes in D:

X

h ��

f // Y

g

��

F (X)

F (h) $$

F (f) // F (Y )

F (g)

��
Z F (Z)

.

We only need to show the sufficiency, which could be deduced from the following

diagram:

GF (X)
GF (f)//

GF (h) **

βX

��

GF (Y )

βY

��

GF (g)

%%
GF (Z)

βZ

��

X
f //

h
**

Y
g

&&
Z

where G : D → C is a quasi-inverse of F , and β : GF ∼= IdC is a natural

isomorphism.

Just note that the three rectangles are commutative since β is a natural

isomorphism. This follows that one of the triangles commutes if and only if
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the other does as well. Here the situation is:

GF (h) = GF (g)GF (f) =⇒ h = gf.

(2) This is direct since F is fully faithful (the proposition on equivalent functors).

1.3. (Universal property v.s. Adjoint functors: Part I)

Definition 0.1. (Free vector space on a set) Let k be a field and S be a set.

Define

kS := {
∑
s∈S

αss | αs ∈ k, only finitely many αs are nonzero}

= {α : S → k (a map) | Finitely many αs are nonzero}.

A characteristic property of the free vector space kS is that: For any

k-vector space V and any map f : S → V , then f could be extended uniquely

to a k-linear map from kS to V . Try to define a functor from Set to

k-Vec according to this so-called universal property, and find some relation

with the forgetful functor

U : k-Vec→ Set.

Answer. Please check the concepts in [Jacobson - Basic Algebra II, Section 1.7].

For the definition of this functor F : Set→ k-Vec, specific steps are as follows:

Let ιX : X ↪→ kX denotes the inclusion map for each X ∈Set.

i) The correspondence of objects is F (X) := kX;

ii) The map on morphisms: For any X, Y ∈Set and f ∈ HomSet(X, Y ), since ιY f

is a map from X to kY , there exists a unique k-linear map F (f) : kX → kY
such that

X

f
��

ιX // kX
∃|F (f)
��

Y ιY
// kY

commutes in Set.
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iii) F (gf) = F (g)F (h) and F (idX) = idF (X) are also followed by the existence

and uniqueness of F . Please fill the details (by diagrams).

§0.2 Practice: Week 02 - Abelian Categories

Let C be an additive category with the direct sum ⊕ and zero object 0.

2.1. (1) Show that any zero morphism 0 (the zero element in the “Hom sets” as

abelian groups) has the following property:

0 ◦ f = 0, g ◦ 0 = 0

as long as the compositions make sense;

(2) Show that any morphism from 0 (object) or to 0 must be a zero morphism.

Answer. (1) Let X, Y, Z ∈ C and g ∈ HomC(Y, Z). Denote the zero in HomC(X, Y )

by 0, and 0 = 0 + 0 holds evidently. Then by the biadditivity of composition

◦, we obtain

g ◦ 0 = g ◦ (0 + 0) = g ◦ 0 + g ◦ 0.

Thus g ◦ 0 = 0 ∈ HomC(X,Z).

(2) Let X ∈ C and f ∈ HomC(X, 0). Since HomC(0, 0) = 0, the identity morphism

id0 ∈ HomC(0, 0) must be the zero morphism 0 itself. Thus

f = id0 ◦f = 0 ◦ f = 0

by the conclusion in (1).

2.2. Some functorial properties on ⊕.

(1) Define the bifunctor ⊕ : C × C → C, especially on morphisms;

(2) Prove Proposition 1.2.4.
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Answer. (1) Let (X1, X2), (X
′
1, X

′
2) ∈ C×C and (f1, f2) ∈ HomC ((X1, X2), (X

′
1, X

′
2)).

The existence of direct sums X1⊕X2 and X ′1⊕X ′2 supply following morphisms:

X1

i1
GGGGGBFGGGGG

p1
X1 ⊕X2

p2
GGGGGBFGGGGG

i2
X2 with relations

{
p1i1 = idX1 , p2i2 = idX2

i1p1 + i2p2 = idX1⊕X2

,

X ′1
i′1

GGGGGBFGGGGG

p′1

X ′1 ⊕X ′2
p′2

GGGGGBFGGGGG

i′2

X ′2 with relations

{
p′1i
′
1 = idX′1 , p

′
2i
′
2 = idX′2

i′1p
′
1 + i′2p

′
2 = idX′1⊕X′2

.

It is sufficient to define

f1 ⊕ f2 := i′1f1p1 + i′2f2p2 ∈ HomC(X1 ⊕X2, X
′
1 ⊕X ′2).

(2) The natural isomorphism F (X)⊕ F (Y )
∼−→ F (X ⊕ Y ) would be

η = {ηX,Y := F (iX)pF (X) + F (iY )pF (Y ) | X, Y ∈ C}.

2.3. Claim and prove that:

(1) An “additive equivalence” (i.e. an additive functor which is an equiva-

lence) keeps kernels and cokernels;

(2) An “additive equivalence” between abelian categories are exact.

Answer. (1) (This could be regard as an application of Practice 1.2 (1), and e-

quivalences are fully faithful.)

a) For kernels:

Let F : C → D be an additive equivalence. Suppose that (K, k) be the

kernel of f ∈ HomC(X, Y ). We aim to show that (F (K), F (k)) is the

kernel of F (f) ∈ HomD(F (X), F (Y )) by the definition.

Firstly, since F determines the group homomorphism from HomC(K,Y )

to HomD(F (K), F (Y )), it is evident that

F (f)F (k) = F (fk) = F (0) = 0.
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Now we assume that there is a morphism m : M → F (X) in D such that

F (f)m = 0, and denote the natural isomorphism η : FF−1 ∼= IdD :

F (K)
F (k) // F (X)

F (f) // F (Y )

M

∀m

OO
=⇒ F (K)

F (k) // F (X)
F (f) // F (Y )

FF−1(M)
∼=
ηM

//

F (?)
99

M

∀m

OO

where ? : F−1(M) → X satisfies F (?) = mηM (it exists since F is fully

faithful), and f? = 0 holds consequently. Then need to find some mor-

phism from M (or FF−1(M)) to F (K) making the diagram commute, and

show its uniqueness.

The equation f? = 0 lead us back to a diagram in C, which is

K k // X
f // Y

F−1(M)
?

:: =⇒ K k // X
f // Y

F−1(M)
?

::

∃|l

OO ,

where l : F−1(M) → K is the only morphism making the right-side dia-

gram commute. Finally, we act F on this diagram, and obtain the follow-

ing commuting one in D:

F (K)
F (k) // F (X)

F (f) // F (Y )

FF−1(M)

∃|F (l)

OO

∼=
ηM

//

F (?)
99

M

∀m

OO
.

The uniqueness of F (l)ηM (or F (l)) could be followed by Practice 1.2 (1).

b) For cokernels:

The proof could be similar to a). Another way might be according to the

“fact” that: Cokernels in C are kernels in the dual additive category C∨.

(2) Not hard.

Let C be an abelian category.

2.4. Basic properties on certain morphisms.
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(1) Show that if (K, k) is the kernel of some morphism, then k is a monomor-

phism. Claim a similar property for cokernels;

(2) In a canonical decomposition

K
k−→ X

i−→ I
j−→ Y

c−→ C

of ϕ : X → Y , try to prove that i must be an epimorphism and j must

be a monomorphism;

(3) Show that a morphism is a monomorphism if and only if it is monic, and

a morphism is an epimorphism if and only if it is epic.

Use these characteristic property to prove: A subobject of a subobject

of Z is also a subobject of Z, as well as a similar property on quotient

objects.

Answer. Due to the duality between kernels and cokernels, as well as monomor-

phisms and epimorphisms, we only need to prove propositions for kernels or monomor-

phisms.

(1) Let (K, k) be the kernel of a morphism f : X → Y . We aim to prove Ker(k) =

0. Suppose l : L→ K satisfies kl = 0. Our goal is to show l = 0 ◦ 0 (i.e. the

left-side small triangle commutes), since 0 : L→ 0 is the unique morphism in

HomC(L, 0).

0 0 // K k // X
f // Y

L

l

OO

kl=0

>>

0

__

Fist we note that f(kl) = f0 = 0. Because (K, k) is the kernel of f , it follows

that there should be a unique morphism ? : L→ K making the right-side small

triangle commute (i.e. k?=kl=0). But l and 0 both satisfy this property. We

conclude that l = 0 = 0 ◦ 0.

(2) It is required from the definition of Abelian categories that (I, j) be the kernel

of some morphism (which is c here). Thus j should be a monomorphism

according to (1).

(3) The axiom (A1) in the definition of additive categories follows the fact that:

A morphism f is monic if and only if fg = 0 implies g = 0 (as long as gf is

defined).
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i) Suppose f : X → Y is monic. We aim to show that 0 is the kernel of f .

Let l : L→ X satisfies fl = 0:

0 0 // X
f // Y

L

l

OO

0

__

Since f is monic, the claim in the last paragraph shows that l = 0. Then

the unique morphism 0 : L→ 0 makes the triangle commute.

ii) On the other hand we suppose f : X → Y is a monomorphism. Assume

g : W → X satisfies fg = 0, and we aim to show g = 0. But the

assumption together with 0 = Ker(f) imply that: There exists a unique

morphism 0 : W → 0 such that g = 0 ◦ 0 = 0.

The second claim holds since the composition of monic morphisms are

still monic.

§0.3 Practice: Week 03 - The Definition of Monoidal

Categories

*3.1. Let A be a (unital) ring, and C := A-mod (or simply, C := k-Vec). Prove that

for any X ∈ C, the (covariant)functor HomC(X,−) : C → Abel is left exact.

Try to use this and the dual abelian category C∨, to explain the contravariant

one HomC(−, Y ) is also left exact for any Y ∈ C.

Answer. See Theorem 3.1 in Jacobson’s book “Basic Algebra II”.

3.2. Let C be a monoidal category. Show that:

(1) For any objects X, Y ∈ C and their identities idX and idY , the morphism

idX ⊗ idY is exactly the identity idX⊗Y in HomC(X ⊗ Y,X ⊗ Y );

(2) If f and g are isomorphisms in C, then f ⊗ g is an isomorphism, too.

Answer. (1) This is because that (idX , idY ) is the identity morphism on the ob-

ject (X, Y ) ∈ C × C, and that ⊗ is a bifunctor which keeps identities (i.e.

idX ⊗ idY = idX⊗Y ).
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(2) Denote the inverses of f and g by f−1 and g−1, respectively. Since ⊗ is a

bifunctor, we obtain following equations:

(f−1 ⊗ g−1)(f ⊗ g) = (f−1f)⊗ (g−1g) = id⊗ id = id,

(f ⊗ g)(f−1 ⊗ g−1) = (ff−1)⊗ (gg−1) = id⊗ id = id .

3.3. Let C be a monoidal category. Show that the “2. The unit axiom” in

Definition 2.1.1 holds. That is to say, functors L1 := 1⊗− and R1 := −⊗ 1

on C are (auto)equivalences.

Answer. It is said in our definition of monoidal categories that there are natural

isomorphsms

l : L1
∼−→ IdC and r : R1

∼−→ IdC,

which imply that IdC is the quasi-inverse of L1 as well as R1.

§0.4 Practice: Week 04 - Properties of the Unit Object

4.1. Let (C,⊗, a,1, l, r) be a monoidal category. Please fill parts in the proof of

Proposition 2.2.4 (“the right triangle” ) and Proposition 2.2.6 (uniqueness of

the unit), which are:

(1) Show that the following diagram commutes for all X, Y ∈ C:

(X ⊗ Y )⊗ 1

rX⊗Y ''

aX,Y,1 // X ⊗ (Y ⊗ 1)

idX ⊗rYww
X ⊗ Y

.

Prove it directly, or use the language of the opposite Cop (and “the left

triangle”);

(2) Suppose (1′, l′, r′) is another unit object. Show that the following diagram

commutes for all X ∈ C:

1

η:=l′1◦(r′1)−1

��

X ⊗ 1

idX ⊗η

��

rX

{{
X

1′ X ⊗ 1′

r′X

cc
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Prove it directly, and try to explain the difficulty if using the language of

Cop (and that “η keeps the left unity”).

Answer. (1) For any Z ∈ C, consider the following diagram:

((X ⊗ Y )⊗ 1)⊗ Z

aX,Y,1⊗idZ //

rX⊗Y ⊗idZ

��

aX⊗Y,1,Z

''

(X ⊗ (Y ⊗ 1))⊗ Z

(idX ⊗rY )⊗idZ

��

aX,Y ⊗1,Z

}}

(X ⊗ Y )⊗ (1⊗ Z)

aX,Y,1⊗Z

''

idX⊗Y ⊗lZ

��

X ⊗ (Y ⊗ (1⊗ Z))

idX ⊗aY,1,Z//

idX ⊗(idY ⊗lZ )

��

X ⊗ ((Y ⊗ 1)⊗ Z)

idX ⊗(rY ⊗idZ )

ww
X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z

aX,Y,Z

OO

It is sufficient to establish the commutativity of the outside triangle (which will

be equivalent to the proposition when Z = 1). The pentagon axiom follows the

commutativity of the upper pentagon, while the central and left triangles are

commutative by the triangle axiom. The remaining parts are two quadrangles,

whose commutativity is ensured by the naturality of aX,−,− in the second and

third variables.

With the help of the opposite monoidal category Cop = (C,⊗op, aop,1, lop, rop)

to C, we first note the following commuting “left” triangle diagram in Cop:

(1⊗op X)⊗op Y

lopX ⊗
opidY ((

aop1,X,Y // 1⊗op (X ⊗op Y )

lop
X⊗opYvv

X ⊗op Y

.

However, the definition of Cop makes the diagram to be the following (in C):

Y ⊗ (X ⊗ 1)

idY ⊗rX ''

a−1
X,Y,1 // (Y ⊗X)⊗ 1

rY⊗Xww
Y ⊗X

.
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(2) Recall that we choose η := l1′ ◦ (r′1)−1 : 1
∼−→ 1′ when proving that η keeps the

“left unity”. Consider the following diagram:

X ⊗ 1
rX

{{

idX ⊗(r′1)−1

++
X (X ⊗ 1)⊗ 1′

r′X⊗1

gg

rX⊗id1′

ww

X ⊗ (1⊗ 1′)
a−1
X,1,1′oo

idX ⊗l1′ss
X ⊗ 1′

r′X

cc

Our goal is to establish the commutativity of the outside quadrangle because

of the definition of η. The upper triangle commutes by the “right triangle” of

(1′, r′), and the bottom one does by the triangle axiom of (1, l, r). Finally, the

naturality of r′ on the morphism rX : X ⊗ 1→ X follows that the remaining

small quadrangle is also commutative.

The language of opposite monoidal categories could help if the equation

l1′ ◦ (r′1)−1 = r1′ ◦ (l′1)−1 holds.

4.2. Let C be category, and F,G,H : C → C be functors. Suppose E is an au-

toequivalence on C. Show that within the following diagrams, the left one

commutes for each X ∈ C if and only if the right one commutes for each

X ∈ C:

F (X)
fX //

hX $$

G(X)

gX
��

F (E(X))
fE(X) //

hE(X) &&

G(E(X))

gE(X)

��
H(X) H(E(X))

.

where f , g and h are all natural. (This might be the last step of the Proof

2.2.3 in the book.)

Answer. The proof is similar to Practice 1.2. We only prove the “if” part. Denote
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the natural isomorphism α : EE−1 ∼= IdC, and consider the following diagram:

F (EE−1(X))
fEE−1(X)//

hEE−1(X) ,,

F (αX)

��

G(EE−1(X))

G(αX)

��

gEE−1(X)

((
H(EE−1(X))

H(αX)

��

F (X)
fX //

hX
,,

G(X)
gX

((
H(X)

The upper triangle commutes since the diagram in our sufficient condition com-

mutes on the object E−1(X). Other rectangles commute by the naturality of f , g

and h.

§0.5 Practice: Week 06 - Monoidal Functors and

Strictness Theorem

6.1. Let C,D be a monoidal category, and (F, J) : C → D be a monoidal functor.

Suppose that ϕ : 1
∼−→ F (1) is the canonical isomorphism (in D). Show that:

(1) Diagram (2.25) commutes for each X ∈ C if and only if the following

diagram commutes for each X ∈ C:

1⊗ F (1⊗X)
lF (1⊗X) //

ϕ⊗idF (1⊗X)

��

F (1⊗X)

F (l1⊗X)−1

��
F (1)⊗ F (1⊗X)

J1,1⊗X // F (1⊗ (1⊗X))

(2) The endofunctor −⊗ F (1) on D is an autoequivalence;

(3) Try to prove Prop 2.4.3 then.

Answer. (1) Since the endofunctor 1⊗− on C is an autoequivalence, the claim

holds according to Practice 4.2.

(2) Choose an isomorphism ψ : 1
∼−→ F (1) in D. We could obtain a natural
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isomorphism

r− ◦ (id−⊗ψ−1) : −⊗ F (1) ∼= IdD .

In fact, this is deduced from the following commuting diagram in D:

X

f

��

X ⊗ F (1)
idX ⊗ψ−1

//

f⊗idF (1)

��

X ⊗ 1
rX //

f⊗1
��

X

f

��
Y Y ⊗ F (1)

idY ⊗ψ−1
// Y ⊗ 1

rY // Y

where f : X → Y is an arbitrary morphism in D.

(3) Here we prove Proposition 2.4.3(2.25) for example. By (1), it is sufficient to

establish the commutativity of the following diagram:

1⊗ F (1⊗X)
l //

ϕ⊗id

��

F (1⊗X)

F (l)−1

��

1⊗ (F (1)⊗ F (X))

id⊗J

gg

l

++

ϕ⊗id

��

(1⊗ F (1))⊗ F (X)

a

hh

l⊗id //

ϕ⊗id

��

F (1)⊗ F (X)

J

88

F (l)−1⊗id

��
(F (1)⊗ F (1))⊗ F (X)

a

vv

J⊗id

//
F (1⊗ 1)⊗ F (X)

J

&&
F (1)⊗ (F (1)⊗ F (X))

id⊗J

ww

F ((1⊗ 1)⊗X)

F (a)−1

&&

F (l⊗id)

HH

F (1)⊗ F (1⊗X)
J

//
F (1⊗ (1⊗X))

Another way to prove the commutativity of Diagram (2.26) is to show

that ϕ is also canonical for r, which is however complicated as well.

6.2. Let C,D be a monoidal category, and (F, J) : C → D be an equivalence of

monoidal categories. Show that the left-side diagram commutes in C if and

only if the right side diagram commutes in D:

(X ⊗ 1)⊗ Y
a //

l⊗id

""

X ⊗ (1⊗ Y )

id⊗r

||

(F (X)⊗ 1)⊗ F (Y )
a //

l⊗id

''

F (X)⊗ (1⊗ F (Y ))

id⊗r

ww
X ⊗ Y F (X)⊗ F (Y )

.
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Answer. We only prove the sufficiency. According to Practice 1.2(1), we just

need to show that the following diagram commutes:

F ((X ⊗ 1)⊗ Y )
F (a) //

F (l)⊗id ((

F (X ⊗ (1⊗ Y ))

id⊗F (r)vv
F (X ⊗ Y )

.

But the diagram might be too large...

§0.6 Practice: Week 07 - Duals

7.1. Let C, D be monoidal categories, and F = (F, J, ϕ) : C → D be a monoidal

functor. Let X be an object in C with a left dual X∗. Prove that F (X∗) is a

left dual of F (X) with the evaluation and coevaluation given by

evF (X) : F (X∗)⊗ F (X)
JX∗,X−−−→ F (X∗ ⊗X)

F (evX)−−−−→ F (1)
ϕ−1

−−→ 1,

coevF (X) : 1
ϕ−→ F (1)

F (coevX)−−−−−→ F (X ⊗X∗)
J−1
X,X∗−−−→ F (X)⊗ F (X∗).

Answer. We will suppress some of the associativity and unit constraints, and

we only show the equation

(idF (X)⊗evF (X)) ◦ (coevF (X) ⊗ idF (X)) = idF (X) .

It is sufficient to consider the following commuting diagram:

F (X)

ϕ⊗id

��

F (1⊗X)

F (coevX⊗id)//
F (X ⊗X∗ ⊗X)

F (1⊗evX ) //

J−1

))

F (X ⊗ 1)

J−1

((

F (X)

F (1)⊗ F (X)

J

66

F (coevX )⊗id

//
F (X ⊗X∗)⊗ F (X)

J

55

J−1⊗id

//
F (X)⊗ F (X∗)⊗ F (X)

id⊗J

//
F (X)⊗ F (X∗ ⊗X)

id⊗F (evX )

//
F (X)⊗ F (1)

id⊗ϕ

OO

The proof of the other equation (evF (X) ⊗ idF (X∗)) ◦ (idF (X∗)⊗coevF (X) =

idF (X∗) could be left as an Practice.

7.2. Let C be a monoidal category, and let

X
f // Y

g // Z
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be a diagram in C. Suppose X, Y , Z have left duals. Prove that:

*(1) (g ◦ f)∗ = f ∗ ◦ g∗;

(2) Y ∗ ⊗X∗ is a left dual of X ⊗ Y .

§0.7 Practice: Week 08 - Tensor Categories

8.1. (1) Show that additive equivalences between abelian categories are exact.

(This is exactly Practice 2.3 (2).)

(2) Suppose F and G are natural isomorphic additive functors. Show that

F (X)
F (f)−−→ F (Y )

F (g)−−→ F (Z) is exact

⇐⇒ G(X)
G(f)−−→ G(Y )

G(g)−−→ G(Z) is exact.

Answer. (1) Let E : C → D be an additive equivalence between abelian categories.

It follows from Practice 2.3 (1) that E keeps kernels and cokernels. Now

suppose that

X
f // Y

g // Z

is an arbitrary exact sequence in C, we aim to obtain the exactness of

E(X)
E(f) // E(Y )

E(g) // E(Z)

in D, which means that Im(E(f)) = Ker(E(g)). Then it is sufficient to show

that E keeps images as well.

For this purpose, we act E onto the canonical decomposition of f :

Ker(f)
k−→ X

i−→ Im(f)
j−→ Y

c−→ Coker(f).

We write the result as follows:

E(Ker(f))
E(k)−−→ E(X)

E(i)−−→ E(Im(f))
E(j)−−→ E(Y )

E(c)−−→ E(Coker(f)).

In fact, this is exactly a canonical decomposition of E(f), since E keeps kernels

and cokernels. As a consequence, E(Im(f)) = Im(E(f)).
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Therefore, we know that

Im(E(f)) = E(Im(f)) = E(Ker(g)) = Ker(E(g)).

(2) Suppose η : F ∼= G is a natural isomorphism. Then we have following equa-

tions

G(f) = ηY ◦ F (f) ◦ ηX , G(g) = ηZ ◦ F (g) ◦ ηY .

Since ηX , ηY and ηZ are all isomorphisms, it could be shown that

Im(G(f)) = Im(F (f)), Ker(G(g)) = Ker(F (g)).

8.2. Let C be an abelian category.

*(1) For any V ∈ C, functors HomC(V,−) and HomC(−, V ) are both left exact;

***(2) Left/right adjoint functors are right/left exact;

(Hint: Use Mitchell Theorem, Practice 2.3 (1) and 3.1.)

Answer. (1) We only prove HomC(V,−) is left exact for example.

Mitchell Theorem establishes that there exists a ring A such that C is

additively equivalent to a full abelian subcategory D of A-Mod. Suppose E :

C → D is an additive equivalence. Recall that Hom functors from D are left

exact. Thus

HomD(E(V ), E(−)) = HomD(E(V ),−) ◦ E : C → Ab

is also left exact.

Now let 0 → X
f−→ Y

g−→ Z → 0 be an arbitrary short exact sequence in

C. We consider following commuting diagram:

0 // HomC(V,X)
f∗ //

E
��

HomC(V, Y )
g∗ //

E
��

HomC(V, Z)

E
��

0 // HomD(E(V ), E(X))
E(f)∗ // HomD(E(V ), E(Y ))

E(g)∗ // HomD(E(V ), E(Z))
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where the second row is exact, while columns are all isomorphisms between

abelian groups (since E is an equivalence). It is then not hard to know that

the first row is also exact.

**8.3. (Proposition 2.2.1) Let C be multitensor category and V ∈ C.

(1) Let X
f−→ Y

g−→ Z be an arbitrary sequence in C. Show that if

HomC(U,X)
f∗ // HomC(U, Y )

g∗ // HomC(U,Z)

is exact for each U ∈ C, then X
f−→ Y

g−→ Z is also exact.

(2) Prove that V ⊗− is left exact for example.

Answer. (1) Consider the following diagram in C, in which i is an epimorphism

and j is a monomorphism:

X i // Im(f)
j // Y

g // Z

L
l′

bb

il′

OO

l

<< .

Our goal is to show that (Im(f), j) is the kernel of g (by definitions).

(i) Choose idX ∈ HomC(X,X). By the exactness of

HomC(X,X)
f∗ // HomC(X, Y )

g∗ // HomC(X,Z) ,

we obtain that

gji = gf = (g∗ ◦ f∗)(idX) = 0(idX) = 0.

Note that i is epic. Thus gj = 0 holds.

(ii) Suppose that l : L→ Y satisfies gl = 0. By l ∈ Ker(g∗) and the exactness

of

HomC(L,X)
f∗ // HomC(L, Y )

g∗ // HomC(L,Z) ,

there exists a morphism l′ : L→ X such that

l = f∗(l
′) = fl′ = j(il′).
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That is to say, il′ : L → Im(f) makes the right triangle commutes. The

uniqueness condition could be satisfied by i as a monomorphism.

(2) Let 0→ X
f−→ Y

g−→ Z → 0 be an arbitrary short exact sequence in C. We aim

to show that

0→ V ⊗X id⊗f−−−→ V ⊗ Y id⊗g−−−→ V ⊗ Z

is exact.

By (1), it is sufficient to show that, the functor HomC(U, V ⊗ −) is left

exact for each U ∈ C. This is true since HomC(U, V ⊗−) is natural isomorphic

to a left exact functor HomC(V
∗ ⊗ U,−) (Practice 8.2 (1)).

§0.8 Practice: Week 0? - Exactness and Semisimplicity

*9.1. Show that an abelian category could be defined as follows:

(1) Every morphism has kernels and cokernels;

(2) ......

(3) Any morphism f : X → Y could be decomposed into f = ji such that

following sequences are exact:

X
i // // I // 0 and I //

j // Y // 0.


